<progress id="757x9"><progress id="757x9"><font id="757x9"></font></progress></progress>

    <delect id="757x9"><var id="757x9"></var></delect>
      <listing id="757x9"><var id="757x9"><menuitem id="757x9"></menuitem></var></listing>

        <form id="757x9"></form>

        <form id="757x9"></form>
          歡迎訪問上海零露儀器設備有限公司官方網站!客戶對每件產品的放心和滿意是我們一生的追求,用我們的努力,解決您的煩惱!
          Banner
          當前位置:首頁 > 產品中心 > 原位紅外附件
          電池原位紅外附件

          電池原位紅外附件

          產品詳情


          blob.png

          電化學原位紅外光譜分析是紅外分析技術的一個重要分支,能夠定性分析電催化(如CO2電還原等)反應、各種類型電池(如鋰離子、鋰硫電池等)充放電過程中電極表面的產物或中間產物隨時間(電位)不斷變化的趨勢,是研究電化學反應機理以及電化學反應動力學的重要手段之一。

          構造原理

          (1)兩電極體系,專為電池體系設計。

          (2)電化學反應池氣密性良好,可通入反應氣體。

          (3)金剛石晶體,適用性廣。

          image.pngimage.png

          圖2:基本原理示意圖

           

          附件組成

          (1)紅外光譜儀主機適配底板,適配主流紅外光譜儀。

          (2)光路系統。

          (3)PEEK材質氣密性電化學池。

          (4)O型圈密封件。

           

          主要特點

          (1)優化的光路系統,光通量大。

          (2)電化學池密封性能好,可通入反應氣體。

          (3)金剛石晶體光通量大。

          (4)獨特的電極,電解液信號采集調節技術。

          (5)可實現電化學紅外質譜三聯用。

          (6)金剛石晶體板和電化學池拆卸方便,可方便在手套箱中組裝電池。

          (7)提供現場技術服務。

           

          主要技術參數

          1.光譜范圍:250/525-4000 cm-1

          2.晶體種類:金剛石晶體

          3.電化學池:PEEK材質,兩電極體系,氣密性池體,可方便在手套箱中裝卸電池,設有進氣口和出氣口,可實現各類電池充放電過程中紅外光譜的采集。

          4.溫控電化學池,溫控范圍:RT-100℃,溫控精度0.1℃。

          5.電極與金剛石晶體距離調節系統,帶刻度微調功能,重現性好,以實現觀測電解液溶劑化或電極表面物種變化。

          6.電化學池可實現電化學質譜儀與紅外三聯用,提供多聯用技術方案。

          7.反射次數:單次反射。

          8.反射類型:外反射。

          9.光路反射系統適配主流品牌紅外光譜儀,提供光譜儀適配底板,光路系統方便安放或取出光譜儀樣品倉。




          應用案例


          image.png

          鋰離子電池 ?Chem. Mater. 2020, 32, 8, 3405–3413



          image.png

          鋰離子電池 ACS Energy Lett. 2020, 5, 1022?1031



          image.png

          鋅離子電池 Adv. Funct. Mater. 2020, 2003890



          image.png

          鋰離子電池  Joule 2022, 6, 399–417


          部分客戶論文發表清單:

          1. Jianping Xiao*, Bin Zhang*, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 2020, 11, 3415

          2. Lei Yan, Yonggang Wang*, et al. Chemically Self-Charging Aqueous Zinc-Organic Battery. J. Am. Chem. Soc. 2021, 143, 15369-15377 

          3. Bingliang Wang, Yongyao Xia*, et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200-2208

          4. Yang Peng*, et al. Breaking Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production. Angew. Chem. Int. Ed. 2021, 60, 2508-2518 

          5. Zhuo Yu, Yonggang Wang*, et al. Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating. Adv. Energy Mater. 2020, 10, 2000907

          6. Xinwei Ding, Zhi Yang*, et al. Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries Adv. Funct. Mater. 2020, 30, 2003354 

          7. Hong Guo*, Xueliang Sun*, et al. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. ACS Energy Lett. 2020, 5, 1022-1031

          8. Bin Zhang* et al. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO2 Electroreduction. ACS Catal. 2019, 9, 10983-10989 

          9. Suya Zhou, Zhi Yang*, et al. Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries ACS Nano. 2020, 14, 7538–7551

          10. Yongyao Xia*, et al. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. Adv. Sci. 2020, 7, 2000196

          11. Lei Wang*, Yonggang Wang, et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries. Energy Storage Materials. 2020, 26, 593-603

          12. Bin Zhang, et al. Unveiling in situ evolved In/In2O3? x heterostructure as the active phase of In2O3 toward efficient electroreduction of COto formate. Science Bulletin. 2020, 65, 1547-1554

          13. Huani Li, Shubiao Xia*, Hong Guo*, et al. Red Phosphorus Confined in Hierarchical Hollow Surface-Modified Co9S8 for Enhanced Sodium Storage. Sustainable Energy Fuels. 2020, 4, 2208-2219 

          14. Guanglei Cui*, Liquan Chen, et al. Non-flammable nitrile deep eutectic electrolyte enables high voltage lithium metal batteries. Chem. Mater. 2020, 32, 3405-3413 

          15. Guanglei Cui*, et al. Investigation on the Cathodic Interfacial Stability of Nitrile Electrolyte and its performance with High Voltage LiCoO2 Chem. Commun. 2020, 56, 4998-5001 

          16. Zhongbin Zhuang*, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651 

          17. Tiancun Liu, Yong Wang*, et al. Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Materials. 2020, 32, 261–271

          18. X. Yin, Y. Wang*, et al. Designing cobalt-based coordination polymers for high-performance sodium and lithium storage: from controllable synthesis to mechanism detection. Materials Today Energy. 2020, 17, 100478

          19. Song Chen, Jintao Zhang*, et al. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2020, 30, 2003890 

          20. Yanrong Xue, Zhongbin Zhuang*, et al. Sulfate-Functionalized RuFeOx as Highly Efficient Oxygen Evolution Reaction Electrocatalyst in Acid. Adv. Funct. Mater. 2021, 31, 2101405

          21. Hong Guo*, et al. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Materials. 2021, 40, 139-149

          22. Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. SCIENCE CHINA Chemistry. 2021, 64, 1493–1497

          23. Yang Peng*, et al. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR pathway toward High-Efficacy Methane Production. Adv. Mater. 2021, 33, 2101741

          24. Yonggang Wang*, et al. Molecular Tailoring of n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. Angew. Chem. Int. Ed. 2021, 60, 20826-20832 

          25. Hongliang Jiang*, Chunzhong Li*, et al. Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 6613–6622

          26. Yang Peng*, et al. Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 2022, 13, 63 

          27. Jie Zeng*, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nature Nanotechnology. 2021, 16, 1386-1393 

          28. Min-Rui Gao*, et al. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 1, 259-269 

          29. Chen Feng, Shiming Zhou*, Jie Zeng*, et al. Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution. J. Am. Chem. Soc. 2022, 144,21,9271-9279 

          30. Rui Lin, Jianhui Wang, et al. Asymmetric donor-acceptor moleculeregulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 2022, 6, 399–417 

          31. Xiaogang Zhang*, et al. Successive Cationic and Anionic (De)-Intercalation/Incorporation into an Ion-Doped Radical Conducting Polymer. Batteries & Supercaps 2019, 2, 979-984

          32. Zhongju Wang, Yongzhu Fu*, et al. Biredox‐Ionic Anthraquinone‐Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li‐Organic Batteries. Adv. Sci. 2022, 9, 2103632 

          33. Jintao Zhang*, et al. Defect evolution of hierarchical SnO2 aggregatesfor boosting COelectrocatalytic reduction. J. Mater. Chem. A 2021, 9, 14741-14751

          34. Fei Ai, Yijun Lu*, et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nature Energy 2022, 7, 417–426 

          35. Zhejun Li, Yijun Lu*. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nature Energy 2021, 6, 517–528

          36. Shanshan Lu, Wei Zhou. et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem. 2022, 8, 1415-1426.  

          37. Tieliang Li, Yifu Yu, Bin Zhang*, et al. Sulfate-Enabled Nitrate Synthesis from Nitrogen Electrooxidation on Rhodium Electrocatalyst. Angew. Chem. Int. Ed. 2022, e202204541 

          38. Yanbo Li, Bin Zhang, Yifu Yu*, et al. Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets. ACS Energy Letters 2022, 7, 1187-1194 

          39. Yanmei Huang, Yifu Yu, Bin Zhang*, et al. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters 2022, 7, 284-291

          40. Wenfu Xie, Hao Li, Min Wei*, et al. NiSn Atomic Pair on Integrated Electrode for Synergistic Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 7382–7388

          41. Rui Sui, Jiajing Pei, Zhongbin Zhuang*, et al. Engineering Ag?Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting COElectroreduction. ACS Appl. Mater. Interfaces 2021, 13, 17736-17744 

          42. Tiliang Li, Yuting Wang, Yifu Yu*, Bin Zhang*, et al. Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catal. 2021, 11, 14032-14037

          43. Bin Zhang*, et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Science China Chemistry 2020, 63, 1469-1476

          44. Jiangwei Shi, Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China Chemistry 2021, 64, 1493-1497 

          45. Jintao Zhang* et al. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2. Angew. Chem.Int. Ed. 2022, 61, e202113918

          46. Lang Xu* et al. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO2 Reduction. Angew. Chem.Int. Ed. 2022, 61, e202201166

          47. Bin Zhang* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem. 2022, 8, 1415-1426

          48. Sheng Dai*, Minghui Zhua*, Yifan Han* et al. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction. Applied Catalysis B: Environmental 2021, 298,

          49. Nan Wang, Yonggang Wang*, et al. Zinc-organic Battery with a Wide Operation-temperature Window from -70 to 150 oC. Angew. Chem. Int. Ed. 2020,59,14577-14583

          50. Nannan Meng, Yifu Yu, Bin Zhang*, et al. Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids. Angew. Chem. Int. Ed. 2019, 58, 18908–18912





          综合图区亚洲欧美另类图片,亚洲综合天堂AV网站在线,国产欧美另类亚洲综合小说,亚洲精品A片