<progress id="757x9"><progress id="757x9"><font id="757x9"></font></progress></progress>

    <delect id="757x9"><var id="757x9"></var></delect>
      <listing id="757x9"><var id="757x9"><menuitem id="757x9"></menuitem></var></listing>

        <form id="757x9"></form>

        <form id="757x9"></form>
          歡迎訪問上海零露儀器設備有限公司官方網站!客戶對每件產品的放心和滿意是我們一生的追求,用我們的努力,解決您的煩惱!
          Banner
          當前位置:首頁 > 服務與支持

          電化學原位紅外測試

          1. 幾種原位電化學紅外構造簡介

           

          利用分子振動的特征吸收,紅外光譜可以用于原位檢測固體電極上的吸附態物種,從而:(1) 關鍵中間產物的識別和構型鑒定(2)確定電極表面成鍵狀態(3)優先的反應路徑和選擇性確認(4)探究反應環境的影響,如電解液陰離子,陽離子,pH, 添加劑等(5)電極電解液界面雙電層的探測。適用于水系或非水系電催化反應,如CO2RR,  HER, OER, ORR, MOR, EOR, NRR,硝酸根還原,有機電合成等。

           

          1.1 IRAS

          IRAS或IRRAS,也稱為外反射模式,或透反射模式,光滑電極(玻碳電極,光滑金屬電極或FTO等基底)或將電催化劑滴涂或電沉積到光滑電極上,壓到紅外窗口上形成一層電解液薄層(1-10微米),紅外光束穿過光學窗口經過電解液薄層,然后在電極表面反射紅外光,最后到達紅外檢測器。 外反射模一般選用CaF2窗片,窗片的形狀一般為厚度2mm左右的圓片,梯形、半球形或半圓柱型的晶體也經常被使用。     

                     image.png   image.png

          圖1 外反射示意圖                                          圖2 ATR原理示意圖    

           

          1.2 衰減全反射原理的理解

          衰減全反射基本原理:紅外光經過折射率大的晶體再入射到折射率小的試樣表面上,當入射角大于臨界角時,入射光線就會產生全反射。 事實上紅外光并不是全部被反射回來,而是穿透到試樣表面內一定深度后再返回表面在該過程中,試樣在入射光頻率區域內有選擇吸收,反射光強度發生減弱,產生與透射吸收相類似圖,從而獲得樣品表層化學成份的結構信息。 見圖2 ATR原理示意圖。 紅外光穿透晶體界面的深度與晶體折射率和入射光角度有關,常見晶體的折射率見表2,折射率越大,穿透深度越小。

           

          1.3 內反射ATR-SEIRAS和內反射Otto薄層模式

                image.png            image.png

                            圖3 內反射ATR-SEIRAS                                      圖4 內反射Otto薄層模式     


          內反射ATR-SEIRAS模式,也稱為Kretschmann構造,如上圖所示,ATR晶體(ZnSe, Si, Ge)平面上化學鍍或真空鍍一層島狀金屬膜,在金屬膜上底涂或電沉積催化劑,金屬膜作為導電基底,同時作為表面增強劑,使催化劑表面吸附分子的紅外信號會比沒有金屬膜時的信號增強10-1000倍。 這稱為表面增強紅外效應,即SEIRAS。 不同晶體耐受不同范圍pH,光譜范圍也不同,詳見表2

          內反射Otto薄層模式,與外反射構造類似,區別是內反射Otto薄層模式下一般選用ZnSe,Ge,Si,金剛石等衰減全反射晶體,是基于ATR的反射原理,見圖4。

           

           

          2實驗注意事項


          2.1 內外反射的選擇依據

           

          電化學池

           

           可選晶體

           傳質情況

           電場線分布情況

           電極材料要求

           可檢測物種

          ATR內反射Kretschmann(ATR-SEIRAS)

          Diamond,Si,Ge, ZnSe 

          非薄層構造,傳質阻力小

           均勻

          金屬膜+滴涂或電沉積催化劑

           吸附態

          ATR內反射Otto薄層模

          Diamond,Si,Ge, ZnSe

          薄層構造,傳質阻力大

           不均勻

          鏡面光滑或粗糙表面催化劑(如碳紙或泡沫鎳負載型)

          吸附態+溶液相

          外反射薄層模式(IRRAS)

          CaF2

          薄層構造,傳質阻力大

          不均勻

          玻碳電極等鏡面光滑基底電極+滴涂或電沉積催化劑

          吸附態+溶液相


          表1 電化學原位紅外光譜電化學池構型對比

           

          2.2 晶體選擇

           晶體種類

           光譜范圍(cm-1

          pH 范圍

          折射率(折射率越大,穿透深度越?。?/span>

          ATR模式晶體




          Diamond

          525-4000

          1-14

          2.42

          ZnSe

          520-4000

          5-9

          2.40

          Si

          1200-4000

          1-12

          3.40

          Ge

          575-4000

          1-14

          4.00

          外反射模式晶體




          CaF2

          1100-4000

          5-8

          1.43


          表2 不同晶體物理化學特性

           

           

          2.3 入射角度

          在ATR和外反射測量中,入射角的角度和是否選用偏振光作為光源決定了得到的光譜強度; 理論上,大的入射角度(70-80°)會更好一些。 然而,由于光束在界面上沿著入射角度并且一般電極尺寸在1-2cm直徑,當角度在60-80°范圍內改變時,沒有發現明顯的信號增強。 使用60或65°的光路,相同的光路附件可以用于外反射和內反射ATR-SEIRAS。

           

          2.4 正峰和倒峰

          紅外光譜譜圖的展示有吸光度和透過率兩種方式,互為向上和向下的關系,便于討論,假定以吸光度縱坐標,對于某個電位下的參考譜圖(通常為一條直線),隨電位變化,如果產生正峰(即向上),認為是某種物種生成,若為倒峰(即向下),表示某種物種消耗了。如果針對特定的反應,當某種物種消耗的倒峰解釋不通,或者某個范圍內的峰一上一下,譜峰出現異常的時候,可能與其他兩個因素有關,(1)入射角度(2)金屬顆粒(SEIRAS基底或納米催化劑顆粒)的體積填充因子(volume fraction of the composite occupied by the metal particle),注意:不是顆粒的尺寸。

           

          2.5 光路的選擇

          目前常用的光路有兩種,一種是入射角度(一般為60-70度)固定的光路附件,另一種是入射角度可調節(30-80度)的光路附件??烧{角度的光路附件,由于采用了平面鏡和非平面的聚焦鏡組合,增加了鏡片的數量從而增大了光能量的損失,采用一次反射的附件的光路系統,由于沒有多次反射減少了能量的損失,得益于高靈敏度的MCT檢測器,兩種光路均可得到高質量的光譜譜圖。

           

          image.png                          image.png 

                                   圖5 60°入射角光路示意圖                                                      圖6  VeeMaxIII光路示意圖                         

           

          2.6 電化學池的選擇(單腔室和雙腔室,流動和靜止)

          電化學池的種類非常多,有單腔室的(即三電極處在同一腔室內)和雙腔室的。Dunwell等人[4]系統研究了電解液純度和對電極的種類,研究結果推薦:(1)對于CO2電還原,推薦采用雙腔室,質子交換膜將對電極和工作電極隔開,以避免對電極產物擴散到工作電極干擾工作電極的反應(2)采用高純度試劑配置電解液,有時候需要純化電解液(3)對電極采用碳棒,不采用Pt絲。因為Pt會溶解,可能擴散到陰極,Pt是良好的析氫催化劑。Malkani等人詳細對比了流動和靜止CO電還原效果,研究表明攪拌的情況下傳質更好。但是需要注意的是,實際操作中有些催化劑在強烈對流的狀態下會從晶體表面脫落,導致實驗無法進展。

          ATR-SEIRAS模式,或Kretschmann模式,僅適用于粉末催化劑或在金屬膜上電沉積其他催化劑,對于大塊電極或碳紙等多孔基底的催化劑無法表征,因此外反射或Otto模式的也偶爾有使用到。

          image.png   image.png

                                                    圖7 外反射電化學池                          圖8 小體積內反射雙腔室電化學池                           




                                  image.png         image.png           

                                                        圖9 雙腔室可攪拌電化學池示意圖                           圖10 雙腔室可攪拌電化學池                                                                                                           

           

           

          2.表面增強紅外注意事項

          (1)光譜增強的強度依賴于金屬的表面形貌,真空蒸鍍和電化學沉積所制備的金屬島狀膜都能得到很好的增強效果;

          (2)物理吸附和化學吸附的分子都能得到增強,一般情況下化學吸附的分子的增強強度要比物理吸附的分子強;

          (3)與金屬表面直接相連的第一層分子的信號最強,增強效應隨著電極表面距離的增加而衰減,即表面增強是一種短程效應。

            SEIRAS基底的制備

           許多材料可以用來作為金屬沉積的基底,如Ge,Si,ZnSe,CaF2等。增強因子一般和基底材料的折射率以及基底材料本身的化學性質有關,基底本身的化學特性是影響增強效果的很重要因素,因為它決定沉積膜的表面形貌。在每次沉積前對基底的打磨和清洗是保證實驗重復性的管件因素,有時候基底的表面修飾也影響增強效果。

          (1)干法制備納米薄膜

          主要有真空蒸鍍和濺射方式。金屬膜的增強效果受形貌,顆粒大小,島狀顆粒密度等因素影響。對于蒸鍍,比較低的沉積速率(0.1-0.5nm/min)有利于較好的增強效果。

          (2)濕法制備納米薄膜

          化學鍍制備得到的金屬膜比真空鍍的膜島狀納米離子的粒徑要大,化學沉積制備的Au膜與硅基底之間的粘附力要比真空蒸鍍的大得多,而且SEIRAS增強因子更大,這可能是因為基底和金膜之間不存在氧化物,即化學鍍之前硅表面先用NH4F去除了表面氧化物。另外,增強的電場會在氧化層內發生衰減,因此制備好的金屬膜要盡快使用,或者使用前進行電化學清洗。

           

          2.8 電化學測試方法的選擇

          原位電化學紅外光譜檢測中常用的電化學方法有LSV/CV,計時電流法,單步電位階躍法,多步驟電位階躍法,方波伏安法等。根據所選擇的電化學方法相應的光譜數據采集有手動采集和自動采集兩種。


           

          3部分應用案例



          image.png 

          CO2電還原Nature Nanotechnology 2021,16, 1386–1393


           

          image.png

          CO2電還原 J. Am. Chem. Soc.2022, 144, 259?269



          image.png 

          鋅離子電池  Joule 2022, 6, 399–417



           

          image.png 

          鋰離子電池ACS Energy Lett. 2020, 5, 1022?1031

           

            4. 部分客戶論文發表清單: 

           

          1. Jianping Xiao*, Bin Zhang*, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 2020, 11, 3415

          2. Lei Yan, Yonggang Wang*, et al. Chemically Self-Charging Aqueous Zinc-Organic Battery. J. Am. Chem. Soc. 2021, 143, 15369-15377

          3. Nan Wang, Yonggang Wang*, et al. Zinc-organic Battery with a Wide Operation-temperature Window from -70 to 150 oC Angew. C.hem. Int. Ed. 2020,59,14577-14583

          4. Bingliang Wang, Yongyao Xia*, et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200-2208

          5. Yang Peng*, et al. Breaking Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production. Angew. Chem. Int. Ed. 2021, 60, 2508-2518 

          6. Zhuo Yu, Yonggang Wang*, et al. Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating. Adv. Energy Mater. 2020, 10, 2000907

          7. Xinwei Ding, Zhi Yang*, et al. Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries Adv. Funct. Mater. 2020, 30, 2003354 

          8. Hong Guo*, Xueliang Sun*, et al. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. ACS Energy Lett. 2020, 5, 1022-1031

          9. Suya Zhou, Zhi Yang*, et al. Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries ACS Nano 2020, 14, 7538–7551

          10. Yongyao Xia*, et al. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. Adv. Sci. 2020, 7, 2000196

          11. Lei Wang*, Yonggang Wang, et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries. Energy Storage Materials 2020, 26, 593-603

          12. Guanglei Cui*, Liquan Chen, et al. Non-flammable nitrile deep eutectic electrolyte enables high voltage lithium metal batteries. Chem. Mater. 2020, 32, 3405-3413 

          13. Guanglei Cui*, et al. Investigation on the Cathodic Interfacial Stability of Nitrile Electrolyte and its performance with High Voltage LiCoO2 Chem. Commun. 2020, 56, 4998-5001 

          14. Zhongbin Zhuang*, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651 

          15. Tiancun Liu, Yong Wang*, et al. Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Materials 2020, 32, 261–271

          16. X. Yin, Y. Wang*, et al. Designing cobalt-based coordination polymers for high-performance sodium and lithium storage: from controllable synthesis to mechanism detection. Materials Today Energy 2020, 17, 100478

          17. Song Chen, Jintao Zhang*, et al. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2020, 30, 2003890 

          18. Nannan Meng, Yifu Yu, Bin Zhang*, et al. Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids. Angew. Chem. Int. Ed. 2019, 58, 18908–18912

          19. Yanrong Xue, Zhongbin Zhuang*, et al. Sulfate-Functionalized RuFeOx as Highly Efficient Oxygen Evolution Reaction Electrocatalyst in Acid. Adv. Funct. Mater. 2021, 31, 2101405

          20. Hong Guo*, et al. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Materials 2021, 40, 139-149

          21. Yang Peng*, et al. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR pathway toward High-Efficacy Methane Production. Adv. Mater. 2021, 33, 2101741

          22. Yonggang Wang*, et al. Molecular Tailoring of n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. Angew. Chem. Int. Ed. 2021, 60, 20826-20832 

          23. Hongliang Jiang*, Chunzhong Li*, et al. Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 6613–6622

          24. Yang Peng*, et al. Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 2022, 13, 63 

          25. Jie Zeng*, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nature Nanotechnology 2021, 16, 1386-1393 

          26. Min-Rui Gao*, et al. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 1, 259-269 

          27. Chen Feng, Shiming Zhou*, Jie Zeng*, et al. Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution. J. Am. Chem. Soc. 2022, 144,21,9271-9279 

          28. Rui Lin, Jianhui Wang, et al. Asymmetric donor-acceptor moleculeregulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 2022, 6, 399–417 

          29. Zhongju Wang, Yongzhu Fu*, et al. Biredox‐Ionic Anthraquinone‐Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li‐Organic Batteries. Adv. Sci. 2022, 9, 2103632 

          30. Jintao Zhang*, et al. Defect evolution of hierarchical SnO2 aggregatesfor boosting CO2 electrocatalytic reduction. J. Mater. Chem. A 2021, 9, 14741-14751

          31. Fei Ai, Yijun Lu*, et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nature Energy. 2022, 7, 417–426 

          32. Zhejun Li, Yijun Lu*. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nature Enery. 2021, 6, 517–528

          33. Tieliang Li, Yifu Yu, Bin Zhang*, et al. Sulfate-Enabled Nitrate Synthesis from Nitrogen Electrooxidation on Rhodium Electrocatalyst. Angew. Chem. Int. Ed. 2022, e202204541 

          34. Yanbo Li, Bin Zhang, Yifu Yu*, et al. Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets. ACS Energy Letters. 2022, 7, 1187-1194 

          35. Yanmei Huang, Yifu Yu, Bin Zhang*, et al. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters. 2022, 7, 284-291

          36. Wenfu Xie, Hao Li, Min Wei*, et al. NiSn Atomic Pair on Integrated Electrode for Synergistic Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 7382–7388

          37. Rui Sui, Jiajing Pei, Zhongbin Zhuang*, et al. Engineering Ag?Nx Single-Atom Sites on Porous Concave NDoped Carbon for Boosting CO2 Electroreduction. ACS Appl. Mater. Interfaces. 2021, 13, 17736-17744 

          38. Tiliang Li, Yuting Wang, Yifu Yu*, Bin Zhang*, et al. Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catal. 2021, 11, 14032-14037

          39.  Jintao Zhang* et al. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2. Angew. Chem.Int. Ed. 2022, 61, e202113918

          40. Lang Xu* et al. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO2 Reduction. Angew. Chem.Int. Ed. 2022, 61, e202201166

          41. Bin Zhang* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem. 2022, 8, 1415-1426

          42. Sheng Dai*, Minghui Zhua*, Yifan Han* et al. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction. Applied Catalysis B: Environmental. 2021, 298,  



          上一條: 沒有了

          下一條: 電催化DEMS測試

          综合图区亚洲欧美另类图片,亚洲综合天堂AV网站在线,国产欧美另类亚洲综合小说,亚洲精品A片